1,877 research outputs found

    Every P-convex subset of R2\R^2 is already strongly P-convex

    Full text link
    A classical result of Malgrange says that for a polynomial P and an open subset Ω\Omega of Rd\R^d the differential operator P(D)P(D) is surjective on C∞(Ω)C^\infty(\Omega) if and only if Ω\Omega is P-convex. H\"ormander showed that P(D)P(D) is surjective as an operator on D′(Ω)\mathscr{D}'(\Omega) if and only if Ω\Omega is strongly P-convex. It is well known that the natural question whether these two notions coincide has to be answered in the negative in general. However, Tr\`eves conjectured that in the case of d=2 P-convexity and strong P-convexity are equivalent. A proof of this conjecture is given in this note

    On the microlocal properties of the range of systems of principal type

    Full text link
    The purpose of this paper is to study microlocal conditions for inclusion relations between the ranges of square systems of pseudodifferential operators which fail to be locally solvable. The work is an extension of earlier results for the scalar case in this direction, where analogues of results by L. H\"ormander about inclusion relations between the ranges of first order differential operators with coefficients in C∞C^\infty which fail to be locally solvable were obtained. We shall study the properties of the range of systems of principal type with constant characteristics for which condition (\Psi) is known to be equivalent to microlocal solvability.Comment: Added Theorem 4.7, Corollary 4.8 and Lemma A.4, corrected misprints. The paper has 40 page

    A new proof of the analyticity of the electronic density of molecules

    Full text link
    We give a new, short proof of the regularity away from the nuclei of the electronic density of a molecule obtained in [1,2]. The new argument is based on the regularity properties of the Coulomb interactions underlined in [3,4] and on well-known elliptic technics. [1] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, T. Oe stergaard Soerensen: The electron density is smooth away from the nuclei. Comm. Math. Phys. 228, no. 3 (2002), 401-415. [2] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, T. Oestergaard Soerensen: Analyticity of the density of electronic wave functions. Ark. Mat. 42, no. 1 (2004), 87-106. [3] W. Hunziker: Distortion analyticity and molecular resonances curves. Ann. Inst. H. Poincar\'e, s. A, t. 45, no 4, 339-358 (1986). [4] M. Klein, A. Martinez, R. Seiler, X.P. Wang: On the Born-Oppenheimer expansion for polyatomic molecules. Comm. Math. Phys. 143, no. 3, 607-639 (1992). The paper is published in Letters in Mathematical Physics 93, number 1, pp. 73-83, 2010. The original publication is available at " www.springerlink.com "

    The relationship between the Wigner-Weyl kinetic formalism and the complex geometrical optics method

    Full text link
    The relationship between two different asymptotic techniques developed in order to describe the propagation of waves beyond the standard geometrical optics approximation, namely, the Wigner-Weyl kinetic formalism and the complex geometrical optics method, is addressed. More specifically, a solution of the wave kinetic equation, relevant to the Wigner-Weyl formalism, is obtained which yields the same wavefield intensity as the complex geometrical optics method. Such a relationship is also discussed on the basis of the analytical solution of the wave kinetic equation specific to Gaussian beams of electromagnetic waves propagating in a ``lens-like'' medium for which the complex geometrical optics solution is already available.Comment: Extended version comprising two new section

    Lie Groups and mechanics: an introduction

    Full text link
    The aim of this paper is to present aspects of the use of Lie groups in mechanics. We start with the motion of the rigid body for which the main concepts are extracted. In a second part, we extend the theory for an arbitrary Lie group and in a third section we apply these methods for the diffeomorphism group of the circle with two particular examples: the Burger equation and the Camassa-Holm equation

    Analytic and Gevrey Hypoellipticity for Perturbed Sums of Squares Operators

    Full text link
    We prove a couple of results concerning pseudodifferential perturbations of differential operators being sums of squares of vector fields and satisfying H\"ormander's condition. The first is on the minimal Gevrey regularity: if a sum of squares with analytic coefficients is perturbed with a pseudodifferential operator of order strictly less than its subelliptic index it still has the Gevrey minimal regularity. We also prove a statement concerning real analytic hypoellipticity for the same type of pseudodifferential perturbations, provided the operator satisfies to some extra conditions (see Theorem 1.2 below) that ensure the analytic hypoellipticity

    How often does the Unruh-DeWitt detector click beyond four dimensions?

    Full text link
    We analyse the response of an arbitrarily-accelerated Unruh-DeWitt detector coupled to a massless scalar field in Minkowski spacetimes of dimensions up to six, working within first-order perturbation theory and assuming a smooth switch-on and switch-off. We express the total transition probability as a manifestly finite and regulator-free integral formula. In the sharp switching limit, the transition probability diverges in dimensions greater than three but the transition rate remains finite up to dimension five. In dimension six, the transition rate remains finite in the sharp switching limit for trajectories of constant scalar proper acceleration, including all stationary trajectories, but it diverges for generic trajectories. The divergence of the transition rate in six dimensions suggests that global embedding spacetime (GEMS) methods for investigating detector response in curved spacetime may have limited validity for generic trajectories when the embedding spacetime has dimension higher than five.Comment: 30 pages. v3: presentational improvement. Published versio

    Effective Hamiltonians for atoms in very strong magnetic fields

    Full text link
    We propose three effective Hamiltonians which approximate atoms in very strong homogeneous magnetic fields BB modelled by the Pauli Hamiltonian, with fixed total angular momentum with respect to magnetic field axis. All three Hamiltonians describe NN electrons and a fixed nucleus where the Coulomb interaction has been replaced by BB-dependent one-dimensional effective (vector valued) potentials but without magnetic field. Two of them are solvable in at least the one electron case. We briefly sketch how these Hamiltonians can be used to analyse the bottom of the spectrum of such atoms.Comment: 43 page

    Global pointwise decay estimates for defocusing radial nonlinear wave equations

    Full text link
    We prove global pointwise decay estimates for a class of defocusing semilinear wave equations in n=3n=3 dimensions restricted to spherical symmetry. The technique is based on a conformal transformation and a suitable choice of the mapping adjusted to the nonlinearity. As a result we obtain a pointwise bound on the solutions for arbitrarily large Cauchy data, provided the solutions exist globally. The decay rates are identical with those for small data and hence seem to be optimal. A generalization beyond the spherical symmetry is suggested.Comment: 9 pages, 1 figur

    The Gabor wave front set of compactly supported distributions

    Full text link
    We show that the Gabor wave front set of a compactly supported distribution equals zero times the projection on the second variable of the classical wave front set
    • …
    corecore